Что излучает альфа излучение
Альфа бета гамма излучения: защита и характеристика
Альфа излучение является одним из трех радиоактивных потоков, которые возникают при распаде и представляет собой поток частиц с положительным зарядом.
Очень многих людей интересует, что же действительно оно собой представляет и какое влияние оказывает на человеческий организм.
Понятие
Ученый Э. Резерфорд решил провести эксперимент и поместил излучатель радиации в магнитное поле. В результате произошло разделение потока на три разные части – альфа, бета, гамма излучения.
При проведении более подробных опытов ученому удалось определить, что же на самом деле представляет из себя альфа излучение. Частицы по своим параметрам были полностью идентичны атомам элемента гелия. Разница состоит в том, что эти частицы имеют положительный заряд, то есть у них отсутствуют оба электрона.
Альфа и бета излучение относятся корпускулярному испусканию. При этом они выходят из ядра со скоростью примерно равной двадцати тысячам километров в секунду. В результате возникает довольно сильная ионизация, которая приводит к изменению структуры вещества и его химических свойств.
Какие характеристики применимы для такого вида излучения? Чем оно отличается от других?
Характеристика:
Сильная ионизация атомов становится причиной того, что альфа частицы очень быстро теряют свою энергию. В итоге они не могут проникнуть даже через верхний слой кожных покровов. В этом случае риск радиационного излучения минимален.
Однако если такой вид излучения будет получен при использовании ускорителя, то ситуация меняется на противоположную. Происходит быстрый распад α-частиц и образование радионуклидов, представляющих довольно высокую опасность для человека. Даже микроскопической дозы хватит для возникновения лучевой болезни.
Какой спектр имеет альфа излучение? Дело в том, что в его спектре содержится очень мало частиц, способных преодолевать слишком длинное или, наоборот, короткое расстояние. Именно поэтому такое излучение является монохромным, в отличие от бета или гамма.
Откуда появляются альфа частицы? Происхождение данных элементов может быть как искусственным, так и натуральным.
Источники:
Таким образом, источник α-частиц может быть самым разнообразным.
Определяется такой вид излучения с помощью специального прибора – счетчика частиц. Такие устройства показывают наличие самой частицы, атома и их характеристики. Самый известный такой детектор — счетчик Гейгера.
Как защититься от альфа-излучения
Исходя из всего вышеперечисленного, можно сделать определенный вывод о безопасности α-излучения. Для таких лучей преградой является даже просто лист бумаги. При небольшом расстоянии возможно незначительное повреждение только верхних слоев кожи. Таким образом, внешнее воздействие не оказывает негативного влияния.
А вот попадание частиц альфа излучения внутрь организма может стать очень серьезной проблемой. Произойти это может разными способами.
Способы проникновения:
В результате при таком заражении происходит довольно сильная ионизация внутри организма, при этом происходит образование различных окислителей, которые оказывают негативное влияние на все системы организма.
Чтобы избежать внутреннего заражения, необходимо принять определенные меры защиты.
Помимо этого, следует знать, что можно добавить в рацион определенные продукты, а также витамины В и С, которые помогут вывести небольшие дозы излучения.
Таким образом, защита от вредного воздействия заключается в соблюдении мер безопасности.
Где используется альфа-излучения
Учитывая безопасность такого излучения во внешнем воздействии, его используют в медицинских целях.
В такой терапии используются изотопы, возникающие во время потока альфа частиц, например, радон.
Процедуры:
Научно доказано, что альфа излучение намного безопаснее и полезнее, чем бета. Это поток частиц, который проще контролировать, его требуется меньше для того, чтобы справиться со злокачественными образованиями. Помимо этого, такое лечение оказывает благоприятное влияние на многие системы организма.
Системы:
Данная характеристика альфа излучения дает возможность считать его довольно безопасным и даже полезным для человеческого организма. Медицинские учреждения используют его для помощи даже онкологических больных. Однако не стоит забывать, что это все же радиоактивное излучение, поэтому самостоятельно злоупотреблять им не стоит.
Необходимо также опасаться проникновения внутрь частиц альфа излучения в виду их довольно серьезного и опасного влияния на организм и жизнь человека в целом. Про излучение другими вещами можно прочитать здесь
Видео: принцип действия и источник альфа-частиц
Виды радиоактивных излучений
Навигация по статье:
Радиация и виды радиоактивных излучений, состав радиоактивного (ионизирующего) излучения и его основные характеристики. Действие радиации на вещество.
Что такое радиация
Для начала дадим определение, что такое радиация:
Радиоактивное (ионизирующее) излучение можно разделить на несколько типов, в зависимости от вида элементов из которого оно состоит. Разные виды излучения вызваны различными микрочастицами и поэтому обладают разным энергетическим воздействие на вещество, разной способностью проникать сквозь него и как следствие различным биологическим действием радиации.
Альфа излучение
Альфа (α) излучение возникает при распаде нестабильных изотопов элементов.
Альфа частицы обладают большой массой и излучаются с относительно невысокой скоростью в среднем 20 тыс. км/с, что примерно в 15 раз меньше скорости света. Поскольку альфа частицы очень тяжелые, то при контакте с веществом, частицы сталкиваются с молекулами этого вещества, начинают с ними взаимодействовать, теряя свою энергию и поэтому проникающая способность данных частиц не велика и их способен задержать даже простой лист бумаги.
Однако альфа частицы несут в себе большую энергию и при взаимодействии с веществом вызывают его значительную ионизацию. А в клетках живого организма, помимо ионизации, альфа излучение разрушает ткани, приводя к различным повреждениям живых клеток.
Из всех видов радиационного излучения, альфа излучение обладает наименьшей проникающей способностью, но последствия облучения живых тканей данным видом радиации наиболее тяжелые и значительные по сравнению с другими видами излучения.
Облучение радиацией в виде альфа излучения может произойти при попадании радиоактивных элементов внутрь организма, например, с воздухом, водой или пищей, а также через порезы или ранения. Попадая в организм, данные радиоактивные элементы разносятся током крови по организму, накапливаются в тканях и органах, оказывая на них мощное энергетическое воздействие. Поскольку некоторые виды радиоактивных изотопов, излучающих альфа радиацию, имеют продолжительный срок жизни, то попадая внутрь организма, они способны вызвать в клетках серьезные изменения и привести к перерождению тканей и мутациям.
Радиоактивные изотопы фактически не выводятся с организма самостоятельно, поэтому попадая внутрь организма, они будут облучать ткани изнутри на протяжении многих лет, пока не приведут к серьезным изменениям. Организм человека не способен нейтрализовать, переработать, усвоить или утилизировать, большинство радиоактивных изотопов, попавших внутрь организма.
Нейтронное излучение
Не обладая зарядом, нейтронное излучение сталкиваясь с веществом, слабо взаимодействует с элементами атомов на атомном уровне, поэтому обладает высокой проникающей способностью. Остановить нейтронное излучение можно с помощью материалов с высоким содержанием водорода, например, емкостью с водой. Так же нейтронное излучение плохо проникает через полиэтилен.
Нейтронное излучение при прохождении через биологические ткани, причиняет клеткам серьезный ущерб, так как обладает значительной массой и более высокой скоростью чем альфа излучение.
Бета излучение
Бета (β) излучение возникает при превращении одного элемента в другой, при этом процессы происходят в самом ядре атома вещества с изменением свойств протонов и нейтронов.
При бета излучении, происходит превращение нейтрона в протон или протона в нейтрон, при этом превращении происходит излучение электрона или позитрона (античастица электрона), в зависимости от вида превращения. Скорость излучаемых элементов приближается к скорости света и примерно равна 300 000 км/с. Излучаемые при этом элементы называются бета частицы.
Имея изначально высокую скорость излучения и малые размеры излучаемых элементов, бета излучение обладает более высокой проникающей способностью чем альфа излучение, но обладает в сотни раз меньшей способность ионизировать вещество по сравнению с альфа излучением.
Бета радиация с легкостью проникает сквозь одежду и частично сквозь живые ткани, но при прохождении через более плотные структуры вещества, например, через металл, начинает с ним более интенсивно взаимодействовать и теряет большую часть своей энергии передавая ее элементам вещества. Металлический лист в несколько миллиметров может полностью остановить бета излучение.
Если альфа радиация представляет опасность только при непосредственном контакте с радиоактивным изотопом, то бета излучение в зависимости от его интенсивности, уже может нанести существенный вред живому организму на расстоянии несколько десятков метров от источника радиации.
Если радиоактивный изотоп, излучающий бета излучение попадает внутрь живого организма, он накапливается в тканях и органах, оказывая на них энергетическое воздействие, приводя к изменениям в структуре тканей и со временем вызывая существенные повреждения.
Некоторые радиоактивные изотопы с бета излучением имеют длительный период распада, то есть попадая в организм, они будут облучать его годами, пока не приведут к перерождению тканей и как следствие к раку.
Гамма излучение
Гамма радиация сопровождает процесс распада атомов вещества и проявляется в виде излучаемой электромагнитной энергии в виде фотонов, высвобождающихся при изменении энергетического состояния ядра атома. Гамма лучи излучаются ядром со скоростью света.
Когда происходит радиоактивный распад атома, то из одних веществ образовываются другие. Атом вновь образованных веществ находятся в энергетически нестабильном (возбужденном) состоянии. Воздействую друг на друга, нейтроны и протоны в ядре приходят к состоянию, когда силы взаимодействия уравновешиваются, а излишки энергии выбрасываются атомом в виде гамма излучения
Гамма излучение обладает высокой проникающей способностью и с легкостью проникает сквозь одежду, живые ткани, немного сложнее через плотные структуры вещества типа металла. Чтобы остановить гамма излучение потребуется значительная толщина стали или бетона. Но при этом гамма излучение в сто раз слабее оказывает действие на вещество чем бета излучение и десятки тысяч раз слабее чем альфа излучение.
Рентгеновское излучение
Рентгеновское излучение сходно по действию с гамма излучением, но обладает меньшей проникающей способностью, потому что имеет большую длину волны.
Рассмотрев различные виды радиоактивного излучения, видно, что понятие радиация включает в себя совершенно различные виды излучения, которые оказывают разное воздействие на вещество и живые ткани, от прямой бомбардировки элементарными частицами (альфа, бета и нейтронное излучение) до энергетического воздействия в виде гамма и рентгеновского излечения.
Каждое из рассмотренных излучений опасно!
Сравнительная таблица с характеристиками различных видов радиации
характеристика | Вид радиации | ||||
Альфа излучение | Нейтронное излучение | Бета излучение | Гамма излучение | Рентгеновское излучение | |
излучаются | два протона и два нейтрона | нейтроны | электроны или позитроны | энергия в виде фотонов | энергия в виде фотонов |
проникающая способность | низкая | высокая | средняя | высокая | высокая |
облучение от источника | до 10 см | километры | до 20 м | сотни метров | сотни метров |
скорость излучения | 20 000 км/с | 40 000 км/с | 300 000 км/с | 300 000 км/с | 300 000 км/с |
ионизация, пар на 1 см пробега | 30 000 | от 3000 до 5000 | от 40 до 150 | от 3 до 5 | от 3 до 5 |
биологическое действие радиации | высокое | высокое | среднее | низкое | низкое |
Как видно из таблицы, в зависимости от вида радиации, излучение при одной и той же интенсивности, например в 0.1 Рентген, будет оказать разное разрушающее действие на клетки живого организма. Для учета этого различия, был введен коэффициент k, отражающий степень воздействия радиоактивного излучения на живые объекты.
Коэффициент k | |
Вид излучения и диапазон энергий | Весовой множитель |
Фотоны всех энергий (гамма излучение) | 1 |
Электроны и мюоны всех энергий (бета излучение) | 1 |
Нейтроны с энергией 20 МэВ (нейтронное излучение) | 5 |
Протоны с энергий > 2 МэВ (кроме протонов отдачи) | 5 |
Альфа-частицы, осколки деления и другие тяжелые ядра (альфа излучение) | 20 |
Чем выше «коэффициент k» тем опаснее действие определенного вида радиции для тканей живого организма.
Видео: Виды радиации
Памятка начинающему радиофобу или как правильно бояться радиации.
Радиация. Я лично знаю людей, которых это слово повергает в ужас. Смертельно-опасное явление, от которого нет ни спасения, ни защиты. Есть даже комплекс трудно поддающихся лечению психических расстройств под общим названием «радиофобия».
Бояться радиации люди стали не сразу с её открытием, а во многом, благодаря информационным кампаниям времён холодной войны. Авария на Чернобыльской АЭС добавила ужаса, и теперь находятся люди, всерьёз опасающиеся даже WiFi роутеров, параболических антенн (даже принимающих!) и вообще всего, у чего наблюдается антенна.
Есть и проверенное средство защиты — шапочка из фольги, которая, вопреки расхожему мнению, может быть даже стильной. Впрочем, защитные свойства подобного головного убора сильно преувеличены.
Сегодня я хочу в деталях поговорить об этом явлении, которое точнее называть ионизирующим излучением. Оно называется ионизирующем, как нетрудно догадаться, потому что может являться причиной ионизации атомов вещества — потерей атомами своих электронов.
Явление радиоактивности случайно открыл француз Антуан Анри Беккерель. Подробности открытия можно найти в интернете, однако, «случайность» здесь — немного неуместное слово. После открытия Рентгеном своих Х-лучей, открытие радиоактивности в природных веществах было лишь вопросом времени. Важным для нас является более позднее исследование нового вида лучей, а именно — разделение их на три вида в электрическом поле:
Поскольку в тот момент никто понятия не имел, с чем имеет дело, разным типам излучения дали просто названия по буквам греческого алфавита: положительно-заряженным лучам, которые притягивались к отрицательно-заряженной пластине дали название «альфа», отрицательно-заряженным – «бета», а нейтральным (которые не отклонялись — «гамма»).
Есть и другие виды радиации, но к ним мы вернёмся чуть позже, а пока разберём по порядку эти:
Альфа-излучение — поток «альфа частиц», которые по сути являются ядрами гелия-4 и состоят из 2 протонов и двух нейтронов.
Альфа-частица — это сравнительно тяжёлая и сравнительно медленно-движущаяся частица, которая испускается в процессе так называемого «альфа-распада», когда тяжёлое атомное ядро может спонтанно «отпустить» погулять на волю 2 протона, «сцепленные» с двумя нейтронами. При этом массовое число ядра, внезапно закономерно, уменьшается на 4, а атомный номер — на 2. Альфа-распад свойственен почти всем тяжёлым элементам. Чтобы вырваться из цепких лапок сильного ядерного взаимодействия, альфа-частица должна «телепортироваться» (совершить туннельный переход) за пределы его действия — процесс этот абсолютно спонтанный и непредсказуемый, так что предсказать точно, когда именно произойдёт альфа-распад, мы не можем, однако, он обязательно произойдёт.
Что радиофобу необходимо знать об альфа-излучении — во-первых, встретиться с ним хоть в сколько-нибудь значимых количествах довольно сложно (если вы не работаете, разумеется, с большим количеством радия, тория, урана или плутония). Ещё вам нужно знать, что в силу того, что альфа-частицы движутся относительно медленно и имеют относительно крупный размер, они задерживаются практически любой преградой (даже простой лист бумаги на пути потока альфа-частиц полностью его остановит).
Неприятной новостью является то, что по степени биологической опасности, альфа-излучение в силу тех же причин оказывает наиболее разрушительное воздействие на клетки живого организма. Особенную опасность они будут предоставлять, если вы вдруг вдохнёте пыль, излучающую альфа-частицы, поэтому я настоятельно рекомендую носить респиратор в местах, где подобная пыль хотя бы теоретически может содержаться, и никогда не пить чай с полонием!
Бета-частицы на поверку оказались старыми добрыми электронами, которые образуются в процессе который ВНЕЗАПНО называется «бета-распад». За него у нас отвечает слабое фундаментальное взаимодействие. Представьте себе, одному нейтрону в ядре атома наскучило быть нейтроном. Тогда он превращается в протон, а отрицательный электрический заряд уносится вместе с родившимся в процессе электроном (ещё рождается анти-нейтрино, но оно нам абсолютно не опасно, так как практически никак не взаимодействует с веществом).
Где можно встретить бета-лучи? В природе в чистом виде — практически нигде (разве что внутри старого кинескопа), однако, там, где есть радиоактивные материалы, они будут испускаться наравне с альфа-частицами. Есть, впрочем, такие элементы как прометий, криптон и стронций, которые можно назвать более активными излучателями бета-частиц.
Что о бета-излучении надо знать радиофобу — то, что их свободный пробег в воздухе весьма ограничен. Он, конечно, зависит от скорости, которая колеблется от 0,3 до почти скорости света, но дело в том, что преодолеть в свободном полёте электрон сможет лишь метра два, никак не больше. А внутрь организма человека он сможет проникнуть не дальше, чем на 2,5 см. Опять, таки, если не есть, не пить и не дышать ничем радиоактивным, бета-лучи нам «подарят» всего лишь ожоги разной степени тяжести. Берегите глаза! Защитой может служить лист алюминия или даже плексигласа, но в целом, бета лучи являются самым безобидным видом ионизирующего излучения.
Следующим, и, наверное, самым гадким из видов излучения, является не «гамма», как можно было ожидать, а нейтронное излучение. Как следует из названия, данный вид излучения представляет собой поток нейтронов. Почему она самая гадкая? Потому что, от неё очень сложно защититься. Нейтрон не имеет электрического заряда, поэтому имеет очень высокую проникающую способность.
Быстрые нейтроны плохо поглощаются любыми ядрами, поэтому для защиты от нейтронного излучения применяют комбинацию замедлитель-поглотитель. Наилучшие замедлители — водородсодержащие материалы. Обычно применяют воду, парафин, полиэтилен. Также в качестве замедлителей применяют бериллий и графит. Замедленные нейтроны хорошо поглощается ядрами бора, кадмия.
Но на этом прелести нейтронного излучения не заканчиваются. Представьте, что происходит с ядром стабильного атома, в который врезается нейтрон. Почти всегда, вне зависимости от того, как именно был захвачен нейтрон, ядро становится нестабильным (т. е. — радиоактивным). Такой изотоп может «фонить» ещё годы, если не десятилетия, даже после того, как само нейтронное излучение прекратилось. Данный феномен называется «наведённая радиоактивность».
Нейтроны загрязняют материалы, из которых сделаны ядерные реакторы, ещё больше загрязнение будет в термоядерных установках (практически любая реакция синтеза выделяет нейтрон — потому-то и говорят много о гелии-3, которого много на Луне и мало на Земле, если его использовать как термоядерное топливо, то выход нейтронов из этой реакции будет минимальным). При строительстве реакторов стараются избегать использования таких материалов, как, например, никель, серебро, молибден или висмут — они при облучении нейтронами дают изотопы с периодом полураспадада, исчисляющиеся тысячами лет. В то же время, такие материалы, как титан, вольфрам, марганец или хром — наоборот, дают изотопы, которые потеряют активность уже через несколько десятков лет (успокаивает, не правда ли?).
Поскольку поглощение нейтронного излучения сопровождается гамма-излучением, необходимо применять многослойные экраны из различных материалов: свинец-полиэтилен, сталь — вода и т. д.
Гамма-излучение — то же электромагнитное излучение, что и видимый свет, только с намного меньшей длиной волны и, соответственно, — большей частоты. Малая длина волны обеспечивает отличную проницаемость сквозь практически любой материал. В природе мы получаем гамма-кванты из тех же источников, что и в случае с альфа- и бета- излучением, то есть — в качестве продукта радиоактивного распада. После эмиссии альфа- или бета- частицы, ядро может находиться в возбуждённом состоянии. При переходе электронов в ядре в более низкое энергетическое состояние, они избавляются от избытка энергии, испуская фотон, обычно в гамма-диапазоне. Гамма-излучение так же сопровождает почти любую ядерную или термоядерную реакцию.
Чем опасно — если не попадать под него напрямую, то ничем. Разве что может нагреть материалы, которые были у него на пути. Если же подставиться под пучок гамма-квантов, то можно получить загар. Причём, так как ни кожа, ни мышцы гамма-излучение не останавливают, то загар внутренних органов, которые для этого не совсем приспособлены.
Как защититься? Толстым слоем свинца, бетона, хоть обеднённого урана — в целом, принцип такой — чем плотнее вещество, тем лучше. 1 см свинца здесь будет эквивалентен 4 см гранита, 6 см бетона или 9 см грунта.
Учёные придумали большое количество единиц измерения радиоактивности. Я перечислю только часть из них: рентген, рад, грэй, кюри, беккерель и даже такие экзотические, как «банановый эквивалент». В той или иной степени они отвечали потребностям учёных, однако они не являются универсальными, а главное — плохо информируют о степени биологического вреда, который может причинить то или иное излучение. В системе Си для этих целей имеется своя единица, определённая, как 1 джоуль полученной с излучением энергии, на 1 килограмм биологической ткани. Данная единица получила название в честь шведа Рольфа Зиверта.
Но не всё с Зивертом так просто, как может показаться. Раньше (а иногда и сейчас) использовалась единица бэр (биологический эквивалент рентгена), англ. rem (roentgen equivalent man) — устаревшая внесистемная единица измерения эквивалентной дозы. 100 бэр равны 1 зиверту. Также верно, что 100 рентген = 1 зиверт с оговоркой, что рассматривается биологическое действие рентгеновского излучения (или другого фотонного излучения, например, гамма-к=излучения).
Что здесь надо знать — что дозы бывают разными:
Поглощённая доза — тупо характеризует, сколько джоулей энергии было передано излучением веществу (любому). Её можно измерить объективно, измеряется в джоулях на килограмм и имеет название грей.
Эквивалентная доза. Не все излучения одинаково полезны. По воздействию на человеческий организм, равная поглощённая доза разных видов излучения наносит разный вред живым тканям. Для учёта данного вреда выражает биологический эффект облучения живого организма. Считается так же, как и поглощённая доза, однако потом домножается на специальный коэффициент (коэффициент качества, Q factor) самого излучения:
Здесь стоит обратить внимание на нейтроны. Может показаться, что чем больше энергия нейтронов, тем они будут вреднее, однако, это не совсем так. Наиболее вредными являются нейтроны с энергией около 1 МэВ, более быстрые нейтроны имеют тенденцию пролетать вас насквозь, причиняя меньше вреда.
Эквивалентная доза выражается уже в зивертах, однако, и она не позволяет достоверно оценить степень вреда, наносимого радиацией, так как не учитывает разную восприимчивость тканей действию ионизирующего излучения, поэтому ещё говорят об эффективной дозе.
Эффективная доза (или эффективная эквивалентная доза). Та же эквивалентная доза, но с учётом радиочувствительности разных тканей организма, иными словами — мера риска возникновения отдаленных последствий облучения. Эффективная доза рассчитывается как сумма эквивалентных доз по всем органам и тканям, умноженных на взвешивающие коэффициенты для этих органов, и отражает суммарный эффект облучения для организма. Коэффициенты выведены медиками с использованием статистики заболеваемости онкологическими заболеваниями в зависимости от полученной эквивалентной дозы (по версии 2007 года). Ранее использовалась статистика смертности и коэффициенты были несколько другие. Точные значения можно почерпнуть здесь.
Теперь, подкованные этим знанием, можно оценить дозы радиации не количественно, что скучно и не наглядно, а качественно — в сравнении друг с другом (да, эта картинка уже много раз публиковалась, но уж больно она хороша):
Собственно, весь этот раздел можно уместить в одной картинке. Что тут можно сказать — мы живём в радиоактивном мире, в котором излучает практически всё. Даже ваше собственное тело является источником радиоактивного излучения, и если вы спите рядом с кем-то, то нахватаетесь дозы и от соседа по койке. Бананы — и те содержат радиоактивный Калий-40.
На заре исследования радиоактивности для измерения уровня радиации использовали фотоплёнки — чем сильнее она засвечена, тем, соответственно, сильнее излучение.
В настоящее время самым распространённым детектором ионизирующего излучения является счётчик Гейгера (точнее Гейгера-Мюллера).
Его принцип действия до безобразия прост и использует тот факт, что излучение является ионизирующим. Внутри металлического полого цилиндра расположен металлический стержень, которые разъединены непроводящим электрический ток газом. На цилиндр и на стержень подаётся напряжение очень близкое к тому, чтобы пробить разрядом зазор между ними. По сути — это конденсатор. Если в цилиндр ударяет гамма-квант, то атом стенки ионизируется и испускает внутрь цилиндра электрон, который и инициирует пробой, который и создаёт характерный щелчок в динамике, подключённому в цепь. Чем больше в единицу времени прилетает гамма-квантов, тем интенсивнее треск.
Минус данного устройства в том, что он очень плохо регистрирует (вернее, совсем не регистрирует) нейтроны и альфа-частицы.
Есть и более совершенные, более чувствительные приборы, однако они более дорогостоящи, более громоздки и практически недоступны для доморощенного радиофоба.
Счётчик Гейгера является детектором излучения, не стоит путать его с дозиметром — более сложным прибором, который может иметь несколько детекторов разного типа. Такие приборы, как следует из названия, призваны измерять именно дозу полученной радиации согласно последним инструкциям ВЦСПС Международная комиссия по радиологической защите.
Накопленная доза и вред
Все эти детали запоминать радиофобу-параноику особо не нужно. Важно понимать смысл накопленной дозы. Если вы один час находитесь рядом с источником излучения 100 миллирентген в час, вы получите дозу в 100 миллирентген. И это будет равносильно вашему нахождению рядом с источником в 10 рентген в час, при условии, что возле него вы проведёте 36 секунд. Иными словами, важна не только мощность излучения, но и время, в течение которого вы ему подвергались — гораздо лучше получить 100 рентген за 20 лет, чем те же 100 рентген за минуту.
Если кто-то продолжает думать, что радиация сможет породить Годзиллу или, что укус радиоактивного паука дарует вам сверхспособности, но я поспешу их разочаровать — ничего такого не произойдёт.
Повреждённая ДНК либо не сможет обеспечить нормальный процесс деления клетки и тогда клетка умрёт, «не дав потомства», то есть клетки умирают в нормальном темпе, но не делятся. Может быть и хуже — клетка разделится, но уже с мутацией и будет продолжать делиться, что со временем может перерасти в раковую опухоль (это не обязательно, но риск возрастает на порядки).
Где найти радиацию?
Как ни странно — практически везде. Более того, именно природному радиоактивному фону мы должны быть благодарны за эволюцию и, в конечном счёте, — за наше существование. Простому обывателю весьма сложно схватить действительно большую дозу радиации, даже если он забредёт в зоны отчуждения в Припяти или Фукусиме (что, впрочем, не означает, что для дурака это невозможно). По большому счёту, даже если вы и окажетесь рядом с радиоактивными объектами, маловероятно, что вы успеете получить хоть сколько-нибудь значимую дозу.